Dynamical properties of quantum impurity systems in and out of equilibrium: a numerical renormalization group approach

Frithjof B. Anders

Institut für Theoretische Physik · Universität Bremen

Dresden, August 15, 2007

Collaborators

NRG Review
R. Bulla, T. Costi and Th. Pruschke
cond-mat/0701105
to be published in RMP
Introduction

1. Kondo effect in bulk materials
2. Kondo effect in nano-devices

The Numerical Renormalization Group

2. Discretization of the bath continuum
3. Fixed points

Spectral functions at finite temperatures

4. Complete basis set of the Wilson chain

Real-time dynamics out of equilibrium

4. Time-dependent numerical renormalization group
5. Spin decay in the anisotropic Kondo model

Conclusion
1 Introduction
 - Kondo effect in bulk materials
 - Kondo effect in nano-devices

2 The Numerical Renormalization Group
 - Discretization of the bath continuum
 - Fixed points

3 Spectral functions at finite temperatures
 - Complete basis set of the Wilson chain

4 Real-time dynamics out of equilibrium
 - Time-dependent numerical renormalization group
 - Spin decay in the anisotropic Kondo model

5 Conclusion
scattering increases for $T \to 0$!
dehaas, de Boer, van den Berg, Physica 1,1115 (1934)
scattering increases for $T \to 0$!

de Haas, de Boer, van den Berg, Physica 1,1115 (1934)

but: saturation $T < T_K$

Onuki et al 1987
Zero bias anomaly

\[G(0) \propto \ln(T) \text{ for } T \to 0! \]
Wyatt, PRL 13,401 (1964)

\[G(V) \text{ in Ta-I-Al} \]
Wyatt, PRL 13,401 (1964)

Kondo 1964
- single spin + metal
- AF coupling: \(H_K = J \vec{S} \vec{s}_{\text{band}} \)
Zero bias anomaly

\[G(0) \propto \ln(T) \text{ for } T \rightarrow 0! \]
Wyatt, PRL 13,401 (1964)

\[G(V) \text{ in Ta-I-Al} \]
Wyatt, PRL 13,401 (1964)

Kondo 1964
- single spin + metal
- AF coupling: \(H_K = J \vec{S} \vec{s}_{\text{band}} \)
Kondo effect in a single electron transistor (SET)

D. Goldhaber-Gordon, Nature 98

M. Kastner RMP 1992
Kondo effect in nano-devices

Kondo effect in a single electron transistor (SET)

D. Goldhaber-Gordon, Nature 98

Kondo effect in nano-devices

lattice problem

- Mapping the lattice problem onto an effective site problem (quantum impurity problem) plus dynamical bath (DMFT).
 Kuramoto 85; Grewe 87; Metzner, Volhardt; Müller-Hartmann, Brand, Mielsch 89;
 Jarrell, Kotliar, Georges 92, · · ·
Kondo effect in nano-devices

Kondo effect in nano-devices

lattice problem

- Mapping the lattice problem onto an effective site problem (quantum impurity problem) plus dynamical bath (DMFT)

Kuramoto 85; Grewe 87; Metzner, Volhardt; Müller-Hartmann, Brand, Mielsch 89;
Jarrell, Kotliar, Georges 92, · · ·
Contents

1. **Introduction**
 - Kondo effect in bulk materials
 - Kondo effect in nano-devices

2. **The Numerical Renormalization Group**
 - Discretization of the bath continuum
 - Fixed points

3. **Spectral functions at finite temperatures**
 - Complete basis set of the Wilson chain

4. **Real-time dynamics out of equilibrium**
 - Time-dependent numerical renormalization group
 - Spin decay in the anisotropic Kondo model

5. **Conclusion**
Quantum Impurity Problems

Quantum Impurity

- finite number of localized DOF
- interacting with a bath continuum
- bosonic bath: see Ingersent

Problem:

- infrared divergence in perturbation theory
- indicator for a change of ground state
- Kondo singlet vs free moment

quantum impurity
metallic host
bosonic bath
Quantum Impurity Problems

Quantum Impurity

- finite number of localized DOF
- interacting with a bath
 continuum
 bosonic bath: see Ingersent

Problem:

- infrared divergence in perturbation theory
- indicator for a change of ground state
 Kondo singlet vs free moment
Quantum Impurity Problems

Quantum Impurity
- finite number of localized DOF
- interacting with a bath continuum
 - bosonic bath: see Ingersent

problem:
- infrared divergence in perturbation theory

indicator for a change of ground state
Kondo singlet vs free moment
Quantum Impurity Problems

Quantum Impurity
- finite number of localized DOF
- interacting with a bath continuum
 - bosonic bath: see Ingersent problem:
 - infrared divergence in perturbation theory
 - indicator for a change of ground state
 - Kondo singlet vs free moment
Discretization of the bath continuum

Numerical Renormalization Group

Wilson 1975, Krishnamurthy et al. 1980

- discretization of the bath continuum on a logarithmic grid:
 \(I_n^+ = D[\Lambda^{-n-1}, \Lambda^{-n}] \)

- Mapping onto a semi-finite chain for an arbitrary bath coupling function \(\Delta(\omega), J(\omega) \)
Numerical Renormalization Group

Wilson 1975, Krishnamurthy et al. 1980

- Discretization of the bath continuum on a logarithmic grid:
 \[I_n^+ = D[\Lambda^{-n-1}, \Lambda^{-n}] \]
- Mapping onto a semi-finite chain for an arbitrary bath coupling function \(\Delta(\omega), J(\omega) \)

quantum impurity
\[|\alpha\rangle \]
\[|\gamma\rangle \]
Discretization of the bath continuum

Numerical Renormalization Group

Wilson 1975, Krishnamurthy et al. 1980

- discretization of the bath continuum on a logarithmic grid:
 \[l_n^+ = D[\Lambda^{-n-1}, \Lambda^{-n}] \]

- Mapping onto a semi-finite chain for an arbitrary bath coupling function \(\Delta(\omega), J(\omega) \)
Wilson’s NRG (1975)

- switching on iteratively the couplings $\xi_m \propto \Lambda^{-m/2}$
- recursion relation (RG transformation)

$$H_{N+1} = \sqrt{\Lambda} H_N + \sum_{\sigma} \xi_N \left(f_{N\sigma}^\dagger f_{N+1\sigma} + f_{N+1\sigma}^\dagger f_{N\sigma} \right)$$

iteratively diagonalize the series of Hamiltonians H_m
- RG: elimination of the high energy states, rescaling by $\sqrt{\Lambda}$
- temperature: $T_m \propto \Lambda^{-m/2}$
- stop at chain length N, when desired $T_N \propto \Lambda^{-N/2}$ is reached
Wilson’s NRG (1975)

- Impurity
- 1
- 2
- 3
- N

\[\xi_1, \xi_2, \xi_3, \xi_N \sim \Lambda^{-N/2} \]

- switching on iteratively the couplings \(\xi_m \propto \Lambda^{-m/2} \)
- recursion relation (RG transformation)

\[H_{N+1} = \sqrt{\Lambda} H_N + \sum_{\sigma} \xi_N \left(f^\dagger_{N\sigma} f_{N+1\sigma} + f^\dagger_{N+1\sigma} f_{N\sigma} \right) \]

- iteratively diagonalize the series of Hamiltonians \(H_m \)
- RG: elimination of the high energy states, rescaling by \(\sqrt{\Lambda} \)
- temperature: \(T_m \propto \Lambda^{-m/2} \)
- stop at chain length \(N \), when desired \(T_N \propto \Lambda^{-N/2} \) is reached
Wilson’s NRG (1975)

- switching on iteratively the couplings $\xi_m \propto \Lambda^{-m/2}$
- recursion relation (RG transformation)

$$H_{N+1} = \sqrt{\Lambda} H_N + \sum_{\sigma} \xi_N \left(f_{N\sigma}^\dagger f_{N+1\sigma} + f_{N+1\sigma}^\dagger f_{N\sigma} \right)$$

iteratively diagonalize the series of Hamiltonians H_m

- RG: elimination of the high energy states, rescaling by $\sqrt{\Lambda}$
- temperature: $T_m \propto \Lambda^{-m/2}$
- stop at chain length N, when desired $T_N \propto \Lambda^{-N/2}$ is reached
Wilson’s NRG (1975)

- Switching on iteratively the couplings $\xi_m \propto \Lambda^{-m/2}$
- Recursion relation (RG transformation)

$$H_{N+1} = \sqrt{\Lambda} H_N + \sum_{\sigma} \xi_N \left(f_{N\sigma}^\dagger f_{N+1\sigma} + f_{N+1\sigma}^\dagger f_{N\sigma} \right)$$

iteratively diagonalize the series of Hamiltonians H_m

- RG: elimination of the high energy states, rescaling by $\sqrt{\Lambda}$
- Temperature: $T_m \propto \Lambda^{-m/2}$

- Stop at chain length N, when desired $T_N \propto \Lambda^{-N/2}$ is reached
Wilson’s NRG (1975)

- switching on iteratively the couplings $\xi_m \propto \Lambda^{-m/2}$
- recursion relation (RG transformation)

$$H_{N+1} = \sqrt{\Lambda} H_N + \sum_\sigma \xi_N \left(f_{N\sigma}^\dagger f_{N+1\sigma} + f_{N+1\sigma}^\dagger f_{N\sigma} \right)$$

iteratively diagonalize the series of Hamiltonians H_m

- RG: elimination of the high energy states, rescaling by $\sqrt{\Lambda}$
 temperature: $T_m \propto \Lambda^{-m/2}$

- stop at chain length N, when desired $T_N \propto \Lambda^{-N/2}$ is reached
CEF Splitting in the SU(4) SIAM

NRG not only a numerical tool! Wilson 1975, Krishnamurty et al. 1980

- analysis of the fixed points $H^* = T_{RG}^2[H^*]$: deep insight into the physics of a model, crossover scales T^*
Numerical Renormalization Group

NRG Review: R. Bulla, T. Costi and Th. Pruschke, cond-mat/0701105

Extensions of Wilson’s method in recent years

- **bosonic baths**: Tong, Bulla, Vojta 2003
- bosonic and fermionic baths: Glossop, Ingersent 2005
- non-equilibrium: Costi, 1997, Anders, Schiller 2005

Calculation of spectral functions

- Frota, Olivera 1986
- Sakai et al 1989
- Costi, Hewson 1992, 1994
- Bulla et al., 1998
- Hofstetter 2000

Problem:

- dynamical properties unsystematic:
 - how are different energy scale connected?
Numerical Renormalization Group

NRG Review: R. Bulla, T. Costi and Th. Pruschke, cond-mat/0701105

Extensions of Wilson’s method in recent years

- **bosonic baths:** Tong, Bulla, Vojta 2003
- **bosonic and fermionic baths:** Glossop, Ingersent 2005
- **non-equilibrium:** Costi, 1997, Anders, Schiller 2005

Calculation of spectral functions

- Frota, Olivera 1986
- Sakai et al 1989
- Costi, Hewson 1992, 1994
- Bulla et al., 1998
- Hofstetter 2000

Problem:

- dynamical properties unsystematic:
 how are different energy scale connected?
Numerical Renormalization Group

NRG Review: R. Bulla, T. Costi and Th. Pruschke, cond-mat/0701105

Extensions of Wilson’s method in recent years
- bosonic baths: Tong, Bulla, Vojta 2003
- bosonic and fermionic baths: Glossop, Ingersent 2005
- non-equilibrium: Costi, 1997, Anders, Schiller 2005

Calculation of spectral functions
- Frota, Olivera 1986
- Sakai et al 1989
- Costi, Hewson 1992, 1994
- Bulla et al., 1998
- Hofstetter 2000

Problem:
- dynamical properties unsystematic:
 how are different energy scale connected?
Numerical Renormalization Group

NRG Review: R. Bulla, T. Costi and Th. Pruschke, cond-mat/0701105

Extensions of Wilson’s method in recent years

- bosonic baths: Tong, Bulla, Vojta 2003
- bosonic and fermionic baths: Glossop, Ingersent 2005
- non-equilibrium: Costi, 1997, Anders, Schiller 2005

Calculation of spectral functions

- Frota, Olivera 1986
- Sakai et al 1989
- Costi, Hewson 1992, 1994
- Bulla et al., 1998
- Hofstetter 2000

Problem:

- dynamical properties unsystematic:
 how are different energy scale connected?
Numerical Renormalization Group

NRG Review: R. Bulla, T. Costi and Th. Pruschke, cond-mat/0701105

Extensions of Wilson’s method in recent years

- bosonic baths: Tong, Bulla, Vojta 2003
- bosonic and fermionic baths: Glossop, Ingersent 2005
- non-equilibrium: Costi, 1997, Anders, Schiller 2005

Calculation of spectral functions

- Frota, Olivera 1986
- Sakai et al 1989
- Costi, Hewson 1992, 1994
- Bulla et al., 1998
- Hofstetter 2000

Problem:

- dynamical properties unsystematic:
 how are different energy scale connected?
Contents

1 Introduction
 • Kondo effect in bulk materials
 • Kondo effect in nano-devices

2 The Numerical Renormalization Group
 • Discretization of the bath continuum
 • Fixed points

3 Spectral functions at finite temperatures
 • Complete basis set of the Wilson chain

4 Real-time dynamics out of equilibrium
 • Time-dependent numerical renormalization group
 • Spin decay in the anisotropic Kondo model

5 Conclusion
Spectral functions at finite temperatures

- Assumption: solve the Wilson chain exactly, i.e. $H_N|n\rangle = E_n|n\rangle$
- Then: Lehmann representation of $\rho(\omega)$ (text book)

$$\rho_{A,B}(\omega) = \sum_{n,m} \frac{(e^{-\beta E_n} + e^{-\beta E_m})}{Z} A_{nm}B_{mn} \delta(\omega + E_n - E_m)$$

The challenge:

- discrete spectrum \rightarrow continuous $\rho(\omega)$, broading of $\delta(\omega)$
- how do we gather the information from different iterations?
- how do we guarantee the sum-rule

$$\int_{-\infty}^{\infty} d\omega \rho(\omega) = 1 \ ?$$
Spectral functions at finite temperatures

- Assumption: solve the Wilson chain exactly, i.e. $H_N |n⟩ = E_n |n⟩$
- Then: Lehmann representation of $\rho(\omega)$ (text book)

$$ \rho_{A,B}(\omega) = \sum_{n,m} \left(\frac{e^{-\beta E_n} + e^{-\beta E_m}}{Z} \right) A_{nm} B_{mn} \delta(\omega + E_n - E_m) $$

The challenge

- discrete spectrum \implies continuous $\rho(\omega)$, broadening of $\delta(\omega)$
- how do we gather the information from different iterations?
- how do we guarantee the sum-rule:

$$ \int_{-\infty}^{\infty} d\omega \rho_\sigma(\omega) = 1 $$.

Spectral functions at finite temperatures

- Assumption: solve the Wilson chain exactly, i.e. $H_N|n\rangle = E_n|n\rangle$
- Then: Lehmann representation of $\rho(\omega)$ (text book)

$$\rho_{A,B}(\omega) = \sum_{n,m} \frac{(e^{-\beta E_n} + e^{-\beta E_m})}{Z} A_{nm}B_{mn} \delta(\omega + E_n - E_m)$$

The challenge

1. discrete spectrum \Rightarrow continuous $\rho(\omega)$, broading of $\delta(\omega)$
2. how do we gather the information from different iterations?
3. how do we guarantee the sum-rule

$$\int_{-\infty}^{\infty} d\omega \rho_\sigma(\omega) = 1 ?$$
Spectral functions at finite temperatures

- Assumption: solve the Wilson chain exactly, i.e. $H_N|n\rangle = E_n|n\rangle$
- Then: Lehmann representation of $\rho(\omega)$ (text book)

$$\rho_{A,B}(\omega) = \sum_{n,m} \frac{(e^{-\beta E_n} + e^{-\beta E_m})}{Z} A_{nm}B_{mn} \delta(\omega + E_n - E_m)$$

The challenge

1. discrete spectrum \Rightarrow continuous $\rho(\omega)$, broading of $\delta(\omega)$
2. how do we gather the information from different iterations?
3. how do we guarantee the sum-rule

$$\int_{-\infty}^{\infty} d\omega \rho_\sigma(\omega) = 1 \quad ?$$
Assumption: solve the Wilson chain exactly, i.e. \(H_N |n\rangle = E_n |n\rangle \)

Then: Lehmann representation of \(\rho(\omega) \) (text book)

\[
\rho_{A,B}(\omega) = \sum_{n,m} \frac{(e^{-\beta E_n} + e^{-\beta E_m})}{Z} A_{nm} B_{mn} \delta(\omega + E_n - E_m)
\]

The challenge

1. discrete spectrum \(\Rightarrow\) continous \(\rho(\omega)\), broading of \(\delta(\omega)\)
2. how do we gather the information from different iterations?
3. how do we guarantee the sum-rule

\[
\int_{-\infty}^{\infty} d\omega \rho_{\sigma}(\omega) = 1 \quad ?
\]
All discarded states: a complete basis set for Wilson chain

Anders, Schiller PRL 95, 196801 (2005), PRB 74,245113 (2006)

complete basis: \{\ket{e}\} = \{\ket{\alpha_{imp}, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \cdots, \alpha_N}\}
Complete basis set of the Wilson chain

All discarded states: a complete basis set for Wilson chain

Anders, Schiller PRL 95, 196801 (2005), PRB 74,245113 (2006)

\[
\begin{align*}
|k',e,1> & \quad |e> \\
|e> & \quad |k,e,1>
\end{align*}
\]

complete basis: \(\{|e\rangle\} = \{|k, e; 1\rangle\} \)
Complete basis set of the Wilson chain

All discarded states: a complete basis set for Wilson chain

Anders, Schiller PRL 95, 196801 (2005), PRB 74,245113 (2006)

\[
|l,e,2\rangle = |k,e,2\rangle + |l,e,3\rangle
\]

complete basis: \(\{|e\rangle\} = \{|k, e; 2\rangle\} + \{|l, e; 2\rangle\} \)
Complete basis set of the Wilson chain

All discarded states: a complete basis set for Wilson chain

Anders, Schiller PRL 95, 196801 (2005), PRB 74,245113 (2006)

Complete basis: \[|e\rangle = \{|k, e; 3\rangle \} + \sum_{m=2}^{3} \{|l, e; m\rangle \} \]
All discarded states: a complete basis set for Wilson chain

Anders, Schiller PRL 95, 196801 (2005), PRB 74,245113 (2006)

Complete basis set of the Wilson chain

\[
\{|e\rangle\} = \sum_{m=2}^{N} \{|l, e; m\rangle\}
\]
Complete basis set of the Wilson chain

Sum-rule conserving NRG Green functions

\[G_{A,B}(z) = \sum_{m=m_{\text{min}}}^{N} \sum_{l} \sum_{k,k'} A_{l,k'}(m) \rho_{k',k}^{\text{red}}(m) B_{k,l}(m) \]

\[+ \sum_{m=m_{\text{min}}}^{N} \sum_{l} \sum_{k,k'} B_{l,k'}(m) \rho_{k',k}^{\text{red}}(m) A_{k,l}(m) \]

\[\frac{z + E_l - E_k}{z + E_k - E_l} \]

- **reduced density matrix** (Feynman 72, White 92, Hofstetter 2000)

\[\rho_{k,k'}^{\text{red}}(m) = \sum_{\text{e}} \langle k, e; m | \hat{\rho} | k', e; m \rangle , \]

- Weichelbaum, von Delft: cond-mat/0607497

- extension to NEQ GF \(G(t, t') \) possible (Anders 2007)
Complete basis set of the Wilson chain

Sum-rule conserving NRG Green functions

\[
G_{A,B}(z) = \sum_{m=m_{\text{min}}}^{N} \sum_{l} \sum_{k,k'} \frac{A_{l,k'}(m) \rho_{k',k}^{\text{red}}(m) B_{k,l}(m)}{z + E_l - E_k} \\
+ \sum_{m=m_{\text{min}}}^{N} \sum_{l} \sum_{k,k'} \frac{B_{l,k'}(m) \rho_{k',k}^{\text{red}}(m) A_{k,l}(m)}{z + E_k - E_l}
\]

- **reduced density matrix** (Feynman 72, White 92, Hofstetter 2000)

\[
\rho_{k,k'}^{\text{red}}(m) = \sum_{e} \langle k, e; m | \hat{\rho} | k', e; m \rangle,
\]

- Weichelbaum, von Delft: cond-mat/0607497

- **extension to NEQ GF** \(G(t, t')\) possible (Anders 2007)
Spectral function in the presents of CEF splitting

\[\Sigma_\alpha(z) \text{ causal} \]

\[G_\alpha^{-1}(z) = z - E_\alpha - \Gamma_\alpha(z) - \Sigma_\alpha(z) \]

\[\text{NCA: } \Sigma_\alpha(z) \text{ violates causality already for } T \gg T_K \]
Spectral function in the presence of CEF splitting

\[\Sigma_\alpha(z) \text{ causal} \]

\[G_\alpha^{-1}(z) = z - E_\alpha - \Gamma_\alpha(z) - \Sigma_\alpha(z) \]

\[\text{NCA: } \Sigma_\alpha(z) \text{ violates causality already for } T \gg T_K \]
Real-time dynamics of an observable

\[\langle \hat{O} \rangle(t) = \text{Tr} \left[\hat{O} \hat{\rho}(t) \right] \]

- Equilibrium: single condition \(\hat{\rho}(t) = \hat{\rho}_0 = \exp(-\beta \mathcal{H}^f) / \mathcal{Z} \)
- Non-equilibrium: two conditions: \(\hat{\rho}_0 \) and \(\mathcal{H}^f \)

\[\hat{\rho}(t) = e^{-i\mathcal{H}^f t} \hat{\rho}_0 e^{i\mathcal{H}^f t} \]

- Calculation of the trace using an energy eigenbasis of \(\mathcal{H}^f \)

\[\langle \hat{O} \rangle(t) = \sum_{n,m} \langle E_n|\hat{O}|E_m \rangle \langle E_m|\hat{\rho}_0|E_n \rangle e^{-i(E_m-E_n)t} \]
Real-time dynamics of an observable

\[\langle \hat{O} \rangle(t) = \text{Tr} \left[\hat{O} \hat{\rho}(t) \right] \]

- Equilibrium: single condition \(\hat{\rho}(t) = \hat{\rho}_0 = \exp(-\beta \hat{H}^f)/Z \)
- Non-equilibrium: two conditions: \(\hat{\rho}_0 \) and \(\hat{H}^f \)

\[\hat{\rho}(t) = e^{-i\hat{H}^f t} \hat{\rho}_0 e^{i\hat{H}^f t} \]

- Calculation of the trace using an energy eigenbasis of \(\hat{H}^f \)

\[\langle \hat{O} \rangle(t) = \sum_{n,m} \langle E_n | \hat{O} | E_m \rangle \langle E_m | \hat{\rho}_0 | E_n \rangle e^{-i(E_m-E_n)t} \]
Real-time dynamics of an observable

\[\langle \hat{O} \rangle(t) = \text{Tr} \left[\hat{O} \hat{\rho}(t) \right] \]

- Equilibrium: single condition \(\hat{\rho}(t) = \hat{\rho}_0 = \exp(-\beta \mathcal{H}^f)/Z \)
- Non-equilibrium: two conditions: \(\hat{\rho}_0 \) and \(\mathcal{H}^f \)

\[\hat{\rho}(t) = e^{-i\mathcal{H}^f t} \hat{\rho}_0 e^{i\mathcal{H}^f t} \]

- Calculation of the trace using an energy eigenbasis of \(\mathcal{H}^f \)

\[\langle \hat{O} \rangle(t) = \sum_{n,m} \langle E_n | \hat{O} | E_m \rangle \langle E_m | \hat{\rho}_0 | E_n \rangle e^{-i(E_m-E_n)t} \]
Real-time dynamics of an observable

\[\langle \hat{O} \rangle (t) = \text{Tr} \left[\hat{O} \hat{\rho}(t) \right] \]

- Equilibrium: single condition \(\hat{\rho}(t) = \hat{\rho}_0 = \exp(-\beta \mathcal{H}^f)/Z \)
- Non-equilibrium: two conditions: \(\hat{\rho}_0 \) and \(\mathcal{H}^f \)
 \[\hat{\rho}(t) = e^{-i\mathcal{H}^f t} \hat{\rho}_0 e^{i\mathcal{H}^f t} \]
- Calculation of the trace using an energy eigenbasis of \(\mathcal{H}^f \)
 \[\langle \hat{O} \rangle (t) = \sum_{n,m} \langle E_n | \hat{O} | E_m \rangle \langle E_m | \hat{\rho}_0 | E_n \rangle e^{-i(E_m - E_n)t} \]
The challenge

Non-equilibrium dynamics in quantum impurity systems

The problem

- evaluation of all energy scales
- avoid overcounting
- relaxation into the new thermodynamic ground state?

The solution

complete NRG basis set of the Wilson chain
The challenge

Non-equilibrium dynamics in quantum impurity systems

The problem

- evaluation of all energy scales
- avoid overcounting
- relaxation into the new thermodynamic ground state?

The solution

complete NRG basis set of the Wilson chain

The challenge

Non-equilibrium dynamics in quantum impurity systems

The problem

- evaluation of all energy scales
- avoid overcounting
- relaxation into the new thermodynamic ground state?

The solution

complete NRG basis set of the Wilson chain
New method: time-dependent NRG

\[\langle \hat{O} \rangle(t) = \sum_{n,m} \langle E_n | \hat{O} | E_m \rangle \langle E_m | \hat{\rho}_0 | E_n \rangle e^{-i(E_m-E_n)t} \]

- \(\hat{O} \): local operator, diagonal in \(\epsilon \)
- reduced density matrix

\[\rho^{\text{red}}_{ll'}(m) = \sum_{l, e; m} \langle l, e; m | \hat{\rho}_0 | l', e; m \rangle \]

- RG upside down: eliminated states contain the information on the time evolution
- discretization averaging simulates continuum

New method: time-dependent NRG

\[
\langle \hat{O}(t) \rangle = \sum_m \sum_{l,l'} \langle l | \hat{O} | l' \rangle e^{i(E_l - E_{l'})t} \rho^{\text{red}}_{l' l}(m)
\]

- \(\hat{O} \): local operator, diagonal in \(e \)
- reduced density matrix

\[
\rho^{\text{red}}_{l' l}(m) = \sum_e \langle l, e; m | \hat{\rho}_0 | l', e; m \rangle
\]

- RG upside down: limited states contain the information on the time evolution
- discretization averaging simulates continuum

New method: time-dependent NRG

\[\langle \hat{O} \rangle (t) = \sum_m \sum_{l,l'} \langle l | \hat{O} | l' \rangle e^{i(E_l - E_{l'})t} \rho_{l' l}(m) \]

- \(\hat{O} \): local operator, diagonal in \(e \)
- reduced density matrix

\[\rho_{l' l}^{\text{red}} (m) = \sum_e \langle l, e; m | \hat{\rho}_0 | l', e; m \rangle \]

- RG upside down: eliminated states contain the information on the time evolution
- discretization averaging simulates continuum

Discussion of the method

- resolving the contradiction: RG and including all energy scale
- no accumulated error in time in contrary to td-DMRG
- exponentially long time scales accessible (up to $t \ast T \approx 1$)
- calculation of time-dependent NEQ Green functions $G(t, t')$ for steplike Hamiltonians possible
Spin decay in the anisotropic Kondo model

Benchmark: decoherence of a pure state

\[|s\rangle = \left(|\uparrow\rangle + |\downarrow\rangle \right) / \sqrt{2} \]

TD-NRG

analytical exact solution and TD-NRG: excellent agreement
Spin decay in the anisotropic Kondo model

Benchmark: decoherence of a pure state

$$|s\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$$

TD-NRG plus analytic solution PRB 74,245113 (2006)

- Analytical exact solution and TD-NRG: excellent agreement
Spin decay in the anisotropic Kondo model

short-time dynamics: perturbative in J_\perp

- AFM regime: infrared divergence
 - exponentially long time-scale $1/T_K$
Spin decay in the anisotropic Kondo model

- **short-time dynamics**: perturbative in J_{\perp}
- **AFM regime**: infrared divergence
- Exponentially long time-scale $1/T_K$
Spin decay in the anisotropic Kondo model

- long time relaxation: $t_{spin} \propto 1/T_K$
- conformal field theory and flow equation
 - exponential decay only for $t \gg 1/T_K$

Flow equation solution: Kehrein 2005

Spin decay in the anisotropic Kondo model

flow equation solution: Kehrein 2005

- long time relaxation: $t_{spin} \propto 1/T_K$
- conformal field theory and flow equation
 exponential decay only for $t \gg 1/T_K$

Contents

1 Introduction
 • Kondo effect in bulk materials
 • Kondo effect in nano-devices

2 The Numerical Renormalization Group
 • Discretization of the bath continuum
 • Fixed points

3 Spectral functions at finite temperatures
 • Complete basis set of the Wilson chain

4 Real-time dynamics out of equilibrium
 • Time-dependent numerical renormalization group
 • Spin decay in the anisotropic Kondo model

5 Conclusion
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium
- TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model

- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium

TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium

TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function

- extendable to non-equilibrium
 TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium
 TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium
- TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium
- TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium
- TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics
Conclusion

The numerical renormalization group

- accurate, non-perturbative solution to any QIP
- fixed points: insight into the physics of a model
- thermodynamics and quantum phase transitions
- equilibrium spectral function
- extendable to non-equilibrium
- TD-NRG: no accumulated error in time

Applications

- one, two-site, multi-channel impurity models
- zoo of coupled quantum dot models
- impurity solver for DMFT calculations
- real-time dynamics